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Abstract. In the paper we study the uniqueness of entire functions sharing a linear polynomial
with higher order derivatives of linear differential polynomials generated by them. The results of
the paper improve and generalize the corresponding results of Lahiri-Kaish (J. Math. Anal. Appl.
406(2013), 66-74).
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1. Introduction, Definitions and Results. Let f be a nonconstant meromor-
phic function in the open complex plane C and a be a polynomial. We denote E(a; f)
the set of a-points of f, where each point is counted according its multiplicity. We
denote by E(a; f) the reduced form of E(a; f). For A C C we denote by n4(r,a; f) the
number of zeros of f — a, counted with multiplicities, which lie in AN{z: |z| < r}. We
define N4(r,a; f) as follows

Na(r,a; f) = /T na(t,a; f) —na(0,a; f)

" dt +n4(0,a; f)logr.
0

Let f and g be two nonconstant meromorphic functions. We say that f and g share
the polynomial a CM(counting multiplicities) if E(a; f) = E(a;g). Also we say that f
and g share a IM(ignoring multiplicities ) if F(a; f) = E(a;g). For standard definitions

and results we refer the reader to (Hayman, 1964).

This paper was presented by the ICAHMMSMM-2019
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In 1986 G. Jank, E. Mues and L. Volkman (1986) considered the case when an entire
function shared a single value with its first two derivatives and proved the following

result.

THEOREM A. (Jank, Mues and Volkman, 1986) Let f be a nonconstant entire function
and a(# 0) be a finite number. If E(a; f) = E(a; fV) and E(a; f) C E(a; f®), then
f=1m.

In fact, in Theorem A, f and f() share the value a CM(counting multiplicities).
Again considering f = e¥? + w — 1, where w™ ! = 1,w # 1 and m(> 3) is an integer
and a = w, we can verify that the second derivative in Theorem A can not be simply

replaced by the m!" derivative for m > 3(see Zhong, 1995) .
In 1995 H. Zhong (1995) generalised Theorem A and proved the following theorem.

THEOREM B. (Zhong, 1995) Let f be a non-constant entire function and a(# 0) be a
finite complex number. If f and f(V) share the value a CM and E(a; f) C E(a; f™) N
E(a; fO+0) forn > 1, then f = f

For A C C U {oo}, we denote by Na(r,a; f)(Na(r,a; f)) the counting function

(reduced counting function) of those a-points of f which belong to A.

In 2011 I. Lahiri and G. K. Ghosh (2011) improved Theorem B in the following

manner.

THEOREM C. (Lahiri and Ghosh, 2011) Let f be a nonconstant entire function and
a,b be two nonzero finite constants. Suppose further that A = E(a; f) \ E(a; f(V) and
B = E(a; fO)\ {E(a; f™) N E(b; ftN)} for n(>1). If each common zero of f —a
and f1) — a has the same multiplicity and N (r,a; f) + Np(r,a; f1) = S(r, f), then
f= Aes + # or f = Ae'e + a, where A\(# 0) is a constant.
Throughout the paper we denote by L a nonconstant linear differential polynomial
in f of the form
L=afY +ayf® + ... +a,f™, (1.1)

where a1, ag,...,a,(3# 0) are constants.

In 1999 P. Li (1999) improved Theorem B by considering a linear differential

polynomial instead of the derivative. The result of P. Li may be stated as follows:
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THEOREM D. (Li, 1999) Let f be nonconstant entire function and L be defined by
(1.1). If E(a; f) = E(a; fV) and E(a; f) € E(a; L) N E(a; LWY), then f = f) = L.

In the same paper P. Li (1999) also proved the following result.

THEOREM E. (Li, 1999) Let f be a non-constant entire function and L be defined
by (1.1). If E(a; f) = E(a; L) , E(a; f) € E(a; fOYNE(a; LY) and Y. 2Fay # 0 or
k=1

i ap # —1, then f = fU = L.
k=1

In 2011 I. Lahiri and G. K. Ghosh (2011) improved Theorem E by replacing the

nature of sharing in the following manner.

THEOREM F. (Lahiri and Ghosh, 2011) Let f be a non-constant entire function
in C, a be a finite nonzero complex number and L be defined by (1.1). Further
suppose that Eyy(a; f) C E(a; fOY and Na(r,a; f) + Ng(r,a; L) = S(r, f), where
A = E(a;f)\ E(a;L) and B = E(a;L) \ {E(a; fV) N E(a; LM)}. Then one of the

following cases holds:

(i) f=a+ ae® and L = ae®, where a is a nonzero constant;
(ii) f =L = ae®, where a is a nonzero constant;

2 n n .
(iii) f=a+ %622 —ae® and L = ae®, where . 2Fa, =0, ap = —1 and o is a
k=1 k=1
nonzero constant.

In the same paper 1. Lahiri and G. K. Ghosh also proved the following result.

THEOREM G. (Lahiri and Ghosh, 2011) Let f be a nonconstant entire function in
C, a be a finite nonzero complexr number and L be defined by (1.1). Further let
Na(r,a; f) + Np(r,a; L) = S(r, f), where A = E(a; f)\ F(a; L) and B = E(a; L) \
{E(a; fOY N E(a; LYY}, If f # L then one of the following holds:

(i) f=a+ ae® and L = ae®, where a is a nonzero constant;

.o 2 n n )
(ii)) f=a+ %eQZ — ae® and L = ae?, where Y. 2%a;, =0, ap = —1 and o is a
k=1 k=1
nonzero constant.
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In 2013 I. Lahiri and I. Kaish (2013) considered the case when f shares a nonzero
finite value with £, L) and L *Y for some nonnegative integer k. They proved the

following theorem.

THEOREM H. (Lahiri and Kaish, 2013) Let f be a non-constant entire function, a
be a finite nonzero complex number and k(> 0) be an integer. Further suppose that L
defined by (1.1) be such that L*+1) is nonconstant and

(1) Na(r,a; f) + Np(r,a; L®) + No(r,a; fO) = S(r,f), where A = E(a; f) \
E(a; W), B = E(a; LW) \ {E(a; fV) 0 E(a; LM*D)} and C = E(a; fV) \
E(a L(kH))

(iii) E(a; f) NE(0; LEFD) = g

Then L = ae® and f = ae® or f = a+ ae®, where a(# 0) is a constant.

Some interesting results on this topic have been obtained (see, e.g. (Kaish and I.
Lahiri, 2018 and Wang, Lei and Chen, 2014)).

We now state the main result of the paper.

THEOREM 1.1 Let f be a nonconstant entire function in C, a = az + 5(# f), where
a(#0) and B are constants , and L be defined by (1.1).

Further suppose that

(i) Na(r,a;f) + Np(r,a; L*¥)) = S(r,f), where A = E(a; f) \ E(a;L®) and
B = E(a; L)\ {E(a; fV) N E(a; f@) N E(a; LED)}, where k(> 1) be an

integer;
(it) Byy(a; f) C B(a; fV) and

(111) N(Q(Ta a; f) = S(T’, f)
Then f =L = ce® or f = a+ ce* , where ¢(# 0) is a constant.
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In the next theorem we see the possible form of an entire function if we drop the
hypothesis Fyy(a; f) C E(a; fM). In fact the Case 2 of the proof of Theorem 1.1

suggests the following theorem.

THEOREM 1.2 Let f be a nonconstant entire function in C, a = az + 5(# f), where
a(# 0) and B are constants, and L be defined by (1.1) . Further let Na(r,a; f) +
Np(r,a; L®)Y) = S(r, f), where k(> 1) be an integer and No(r,a; f) = S(r, f), where
A= Bas )\ Elai L) and B — Blas LO)\ (Blas 1) 1 Eas /) 1 Blas L)),
If f # L then f = a+ ce®, where ¢(# 0) is a constant.

The following example shows that the hypothesis (i) of Theorem 1.1. is essential.

EXAMPLE 1.1 Let f(2) = ¥, L = f@ + O and a(z) = 2z then clearly
Na(r,a; f) + Np(r,a; L®) £ S(r, f) and Ey(a; f) C E(a; fM). It is obvious that
each common zero of f —a and fY) — a has the same multiplicity, then a — a(V) =
(fD — oMy — (fO) — a), we have that if zy is a common zero of f-a and f(N) — a
with multiplicity q(> 2), then zy is a zero of a — a) with multiplicity ¢ — 1. So
Ng(r,a; f) < 2N(r,0; a—aMD)+Na(r,a; f) = S(r, f) that is hypothesis (iii) of Theorem
1.1. holds, but neither f = L nor f = a + ce®.

2. Lemmas. In this section we present some necessary lemmas.

LEMMA 2.1 {p.47 (Hayman, 1964)} Let f be a nonconstant meromorphic function
and ay,az,a3 be three distinct meromorphic functions satisfying T(r,a,) = S(r, f) for
w=1,23. Then

T(r,f) < N(r,0; f —a1) + N(r,0; f —az) + N(r,0; f —az) + S(r, f).

LEMMA 2.2 {p. 57 (Hayman, 1964)} Suppose that g is a monconstant meromorphic

function and ¥ = Z a#g ") where a;,s are meromorphic functions satisfying T (r, a,) =

m
S(r,g) for u =0, 1 2 L. If U is nonconstant, then

T(r,g) < N(r,00;9) + N(r,0;9) + N(r,1;¥) + S(r, g).

LEMMA 2.3 Let f be a transcendental meromorphic function and a = az + B, where
a(#0) and B are constants. Then

T(r,f) < N(r,o0; f) + N(r,a; f) + N(r,q; L(k)) + S(r, f).
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Proof: The lemma follows from Lemma 2.2 for g = f — a,a9 = 0 and ¥ = % This

proves the lemma.

LEMMA 2.4 {p.68 (Hayman, 1964)} Let f be meromorphic and transcendental function
mn C and f"P = Q, where P, QQ are differential polynomials in f and the degree of Q)
is at most n. Then m(r, P) = S(r, f).

LEMMA 2.5 Let f be a transcendental entire function and L defined by (1.1) be such
that L*+1) s nonconstant. Let a = az + B3, where a(# 0) and B are constants and
m(r,a; f) = S(r, f). Further suppose that

(i) Na(r,a; f) + Np(r,a; L®) = S(r, f), where A = E(a; f) \ E(a; L¥) and
B = E(a; L™) \ {E(a; fM) N E(a; f?) N E(a; L*D)Y, where k(> 1) be an

integer;

(ii) Ey(a; f) € E(a; fW). Then f = L = ce?, where ¢ is a nonzero constant.

Proof: Let
M —q
7 - f —a .

(2.1)

From the hypotheses we see that v has no simple pole and

N(r,v) < Na(r,a; f) + Ng(r,a; L®) + S(r, f)
= S(r, f)

and since m(r,a; f) = S(r, f) we get

m(r,y) = m(r,
A —q@® ) _g
_l’_
f—a f—a

(1) _
) 48, f)

)+ 5(r, f)
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Hence T'(r,7v) = S(r, f). From (2.1) we get

fO = f + (2.2)
where 7, =y and 1 = a(l — 7).
We repeat the above argument (j — 1)-times by differentiating (2.2) we get

(1)

where 7; and p; are meromorphic functions satisfying v; = Yj—1 T 1vj—1 and

Wi = ,ug-lf)l + p1yj—1 for j =1,2,.... Also we note that T'(r,v;) +T(r, pj) = S(r, f) for
i=1,2,...
Now
LW =3 "a; fU = | S ajyjn | F+ D ajpjpe =Ef +n, say.  (2.4)
j=1 j=1 j=1
Clearly T'(r,&) +T'(r,n) = S(r, f). Differentiating (2.4) we get
LED = M) 4 Wy 4 @), (2.5)
Let zp be a simple zero of f — a such that zp ¢ AU B U C where C = {z :
a(z) —aM(z) = 0}. Then from (2.4) and (2.5) we get a(20)€(20) + n(20) = a(zo) and

a(20)€(20) + a(20)€M (20) + 1M (20) = a(z0). First suppose that aé +7 # a. Since every
multiple zero of f — a must belong to AU B U C then we get

N(r,a; f) < Na(r,a; ) + Np(r,a; L®) + N(r, a; € + 1)
=5, ),
which is impossible because m(r, a; f) = S(r, f). Hence
al +n=a. (2.6)

Similarly
a€ + atW + 9V = q, (2.7)

Differentiating (2.6) and then subtract (2.7) we get a — aV) = £(a — aV). Since a #
a® we get € =1 and n = 0. Then from (2.4) we get f = L*).
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By actual calculation we see that 7o = 72 4+~ and 3 = 4 + 397 + 43 In
general, we now verify that

Vitk =Y+ Pig_1v], (2.8)

where Pj_1[7] is a differential polynomial in v with constant coefficients having degree

at most j + k — 1 and weight at most j + k. Also we note that each term of Pj,1_1[7]

contains some derivative of ~.

Let (2.8) be true. Then
YVi+k+1 = ’Y](i)k + V1Vj+k
= (Y + P a (™ + (7 + P 1))
= AT (G 4+ Ry (P )Y 4 P D]
= TR 4 Pjik[V],

noting that differentiation does not increase the degree of a differential polynomial but

increase its weight by 1. So (2.8) is verified by mathematical induction.

Since Z ajvj+k =€ =1, we get from (2.8)
]_ n ) n
Yoay Y aiPiah] =1 (2.9)
J=1 J=1

n .
If zp is a pole of v with multiplicity p(> 2), then z is a pole of 3 a;47™* with
j=1

multiplicity (n+ k)p and it is a pole of Z apPj4x—1[y] with multiplicity not exceeding
(n+k—1)p+ 1. Since (n+ k)p > (n + k: — 1)p+ 1, it follows that zy is a pole of the
left hand side of (2.9) with multiplicity (n + k)p, which is impossible. So 7 is an entire
function. If 7 is transcendental, from (2.9) we get by Lemma 2.4 that m(r,y) = S(r,~)
and if «y is a polynomial then following the proof of Lemma 2.4 we get m(r,v) = O(1).
Therefore 7 is a constant. Hence from (2.9) we obtain ;44 = AR for j=1,2,.. ..

Since £ = 1, we see that Z a; ¥tk = 1. Also from (2.2) we obtain f(1) =

vf +a(l — ) then f@ = ~f 1)—f—a(l—v) and fG) = vf(Q) and so f?) = ¢z,
where ¢(# 0) is a constant. Then fO = Cevz +d. Since L*) = f so L) = (1)
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implies d + % = L) = g fE+2) g fBH3) o g fEFPHD = ce72(a9F +

asy* !t + oo 4+ a, ¥ 1) then d = 0 and f: aj’ijrk = 1. So fM = % and
j=1

f= Cizz + di. Since m(r,a; f) = S(r, f) then obviously N(r,a;f) # S(r,f). By

hypothesis No(r, a; f) + Ng(r, a; L*)) = S(r, f) so E(a; f)NE(a; f1) # §. Hence from

f(l):%andfzcizz—f—dl we get dj =0 and v = 1. Hence L = f = ce® .

3. Proof of the theorem

Proof of Theorem 1.1 First we claim that f can not be a polynomial. If
f is a polynomial, then T'(r,f) = O(logr). Since f is a polynomial so f — a
and L®) — ¢ have only finite number of zeros. If A # () then A contains finite
number of zeros of f — a. Then Ny(r,a; f) = O(logr), similarly if B # () then
Np(r,a; L*)) = O(logr) and so Na(r,a; f) + Np(r,a; L®) = O(logr). But by the
hypothesis Na(r,a; f) + Np(r,a; L®)) = S(r, f) . Therefore T(r, f) = O(logr) =
S(r,f), a contradiction. Hence A = B = (. Therefore E(a;f) C E(a;L%¥) c
E(a; fV) N E(a; f®) N E(a; LETD).

First we suppose that degree of f be 1 and we consider f = A;z + B, where
A1(#0), By are constants. Then f() = Ay, f) =0, L) = g f+D) g fB+2) o 4
anfFt" =0 = L) Now f—a = Ajz+ B —az — 8 = 0, implies z = ﬁ:ﬁ; is
the only zero of f — a, Algﬁ
L*) — g and also since E(aq; L(k)) C E(a; f(l)) S0, % = —g implies A; = 0, which is

a contradiction.

is the only zero of f(1) — a and —g is the only zero of

We denote by Np(r,a;f | L*) = 4) the counting function (counted with
multiplicities) of those multiple a-points of f which are a-points of L¥) . We first
note that

Neg(r,a; f) < Na(r,a; f) + Nea(r,a; f | L™ = q)
< (n+k)N(r,a; f) + S(r, f)
= S5(r, f)-
Now let f be a polynomial of degree greater than 1. Since N(y(r,a; f) = S(r, f), we

see that f — a has no multiple zero and so all the zeros of f — a are distinct. Since
E(a; f) € E(a; fM) and deg(f — a) = deg(f") — a) + 1, we arrive at a contradiction.
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Therefore f is a transcendental entire function. Now we divide our argument into

the following cases.

CASE 1. f = L™, Then fM = L*+D_ Now

m(r,a; f) = m (r, 7 1 a>

FO — g 1
= m(r, T . 0 a(l))

1
< m<T’M> +S(r, f)

So by Lemma 2.5 we get L = f = ce* where ¢(# 0) is a constant.
CASE 2. f % L™, Then we consider following subcases :
SUBCASE 2.1. Suppose that L+ % () Here we have to consider following

subcases.

SUBCASE 2.1.1. Suppose L*) = LG*+D and L*) £ 1. Then we have two
possibilities either L*) = L*+1D and L+ = @) or LK) = Lk+1) gapd LEHD £ £2),

If we consider the possibility L) = L&+ and L¢:+) = @) Then L*) = Lk+1)
implies L*) = ce*(c is a non zero constant) and so L* D = f) = ce* then
M = ce + X\, and f = ce* + Az + 4. Since L*) % (1) obviously A # 0.

If we consider Az 4+ d # a. Then by Lemma 2.1 we get

T(r,ce®) < N(r,0;ce®) + N(r,00;ce®) + N(r,a — Az — §; ce®) + S(r, ce?)
= N(r,a; f) + S(r, ce?). (3.2)

Since f = L+t 4 Xz 4 6, we see that if z; is a zero of f —a such that z; ¢ AU B
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then Az + & = 0. Therefore

N(ﬁa;f) < NA(T,a;f) +NB(T7G;L(1€)) +N(T707)‘Z+5)
= S(r, f).

which contradicts (3.2).
Next we consider Az + & = a, then f = ce? +a and so f(V) = ce? +a and f?) = ce?.

n
Hence L*) = (a1 +ag + -+ ap)ce® = @ = ¢ce? implies > aj = 1. Hence we get

Jj=1

n
LK) = [*k+1) = ce? and f = a + ce? where ¢(# 0) is a constant and Y a; = 1.
j=1

Next we consider the possibility L*) = L*+D and L+ £ ) Hence LK) £ £2).
Then by the hypothesis we get

_ L&)
N(Tva;L(k)) < NB(TvaaL(k))+N T71;7

e
(k)
S T (ﬁ;@) +S(T7f)

(k)
=N (r, ?(2)> + S(r, f)

< N(r,0; f&) + S(r, ). (3.3)

Again

m(r,a; f) =m (r, ff(—g)a . f(12)>

(r,0; f*) + S(r, f)

(r, f#) = N(r,0; @) + S(r, f)
(r, f®) = N (r,0; @) + S(r, f)
(r, f) = N(r,0; f) + S(r, f)
(r,f) = N(r,0; f@) + S(r, f)

A
3

I
S

IN
3 3

I
N
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and so
N(r,0; f?) < N(r,a; f) + S(r, ). (34)

Hence from (3.3) and (3.4) we get
N(r,a; L") < N(r,a: f) + 5(r, ), (3:5)

which implies by Lemma 2.3 that

T(r, f) <2N(r,a; f) + S(r, f). (3.6)
We put b= M and W — (a—aM)f@ —q(fO - a(l))‘
f—a f—a
Then

N(T,(I)) < NA(T,CL; f) +NB(T7G7L(k)) +N(2(’I“,CL; f) +S(T7f)
=5 ),

also N(r, V) = S(r, f), and m(r,®) = S(r, f), m(r,¥) = S(r, f). Therefore T'(r, ) =
S(r, f) and T'(r,¥) = S(r, f).

Since L) £ ) so & £ 0.

Let z3 be a simple zero of f — a such that zo ¢ AU BUC where C = {2z : a(z) —
aM(z) = 0}.

Then by Taylor’s expansion in some neighbourhood of zo we get

(z — 29)?

f—a=(f=a)(z)+(f —a) V(=)= - 2)+ (f —a)? (=) 5

(z — 29)3

6 + ...

+H(f — a)F(29)
(z — 22)3 n

(z — z9)
2 6

= (a(z2) — aV(22))(z — 22) + a(z2) i + £ (29)

Now differentiating we obtain

(z — 22)?

5 + ...

FO —a = alz2) — aW(z2) + a(z2)(z — 22) + £ (22)
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and
F =a(z) + fO(2)(z — 22) + ..
Also,

— 22)2

LK) = L) (25) + LFHD (25) (2 — 29) + LE2) (29) = 5

+ ...

(z — z2)
2

= a(z2) +a(z2)(z — 2z2) + Lk+2) (22)
Therefore in some neighbourhood of 25 we get
a(z2) + B (22) (2 — 22) — a(z2) — al22) (2 — 22) + O(z — 22)*
(a(z2) — @)(z — 22) + O(z — 22)?
_ (fP(22) — a(22)) (2 — 22) + O(2 — 29)
(a(z2) — a)(z — 22) + O(z — 22)2
_ [¥(z2) —a(z2) + O(z — 29)
 a(z) —a+0(z — z)

O(z) =

Noting that a(z2) — a # 0, then

_ [P() —a(z)

a(z) — «

Also in some neighbourhood of z5 we get

{a(2) — aM(2)Halza) + fP) (22) (2 — 22)} — a(2){a(z2)
—aD(29) + a(z0)(z — 22)} + O(z — 22)?

v() = (a(z2) — a)(z — 22) + O(z — 22)?
_ @P(z—z) +{(az) — ) [P (22) — a(z)a(z2)}(z — 22) + Oz — 2)°
(a(z2) — a)(z — 22) + O(z — 22)?
_ &+ (a(z) = a) [P () — a(z)a(z2) + O(z — z2)
a(z2) —a+ O(z — 22)
Hence

(fP(22) — a(22) — a)(a(z2) — @)

a(z) — «

= f(3)(22) —a(z) — « (3.8)

U(z2) =
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From (3.7) and (3.8) we get
(a(22) — a)®(22) = ¥(22) + a(22) + o — a(z2)
implies
(a(z2) — a)®(22) — ¥(22) —a =0.

If
(a—a)® -V —a#0,

then we get
N(r.a; f) < Na(r,a: f) + Np(r,a; L) + N (r, a5 f)
+N(r,0;(a —a)® — ¥ — a)
=5, ),
which contradicts (3.6).
Therefore
(a—a)® -V —-a=0. (3.9)

First we suppose that ¥ = 0. Then from (3.9) and the definitions of ® and ¥ we get

(a — a)f@}:é’(k) =aand (a — a)f® —a(fM — a) = 0 implies

(a—a)fP —(a—a)L® = a(f —a) (3.10)

and

(a—a)f® =a(fP —a). (3.11)
From (3.10) and (3.11) we get

a(fM —a) = (a—a) L™ = a(f —a). (3.12)
Differentiating (3.12) we get
af® +a(fM —a)—aL® — (o —a)LF) = o(fV) — ). (3.13)

Since L) = LD then from (3.13) we get af® = aL®) implies a(f? — LK) = 0,

since a # 0 so f@ — L% =0 and so ® = 0, which is a contradiction.
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Next we suppose that U # 0. Then from (3.9) and the definitions of ® and ¥ we

get
fA LW  (a—a)f® —a(f® —a)

(a — ) — =«

f—a f—a

this implies
—(a—a)L® +a(fY —a) = a(f — a). (3.14)
Differentiating both sides of (3.14) and put L) = [(+1) e get a(L(k) — f(2)) =0,
since a # 0 so ) — L) =0 and so ® = 0, which is a contradiction.
SUBCASE 2.1.2 Let L(*®) = L(:+1) and L*) = (),
(a — a(l))L(k) _ a(f(l) _ a(l))
f—a '

We put T =
Then
N(r,7) < Na(r,a; f) + Np(r,a; L)) + Nio(r, a5 f) + S(r, f)
= S(r, ),
also m(r,7) = S(r, f). Therefore T(r,7) = S(r, f).

Let z3 be a simple zero of f — a such that z3 ¢ AU BUC where C = {z : a(z) —
aM(z) =0}

Then by Taylor’s expansion in some neighbourhood of z3 we get

f—a=(f—a)zs)+(f —a)V(z)(z - 2)

== %)° +O(z — 23)3

(z — 23)°
2

+(f = a)®(z)

= (a(z3) — @) (2 — 23) + a(z3) +0(z — z3)°
Now differentiating we obtain

fY —a = (a(zs) — @) + a(zs)(z — 23) + (2 — 23)°
and

L®) = L) (25) + LD (23) (2 — 23) + O(z — 23)?

= a(z3) +a(z3)(z — z3) + O(z — Z3)2
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Therefore in some neighbourhood of z3 we get

{a(z) = aM(z)Ha(zs) + a(zs)(z — 23)} — a(2){a(z3)
—a+a(z)(z — 23)} + O(2 — 23)°

(a(z3) — a)(z — z3) + O(z — 23)°
o?(z — 23) — aa(z3)(z — 23) + O(z — 23)?
(z — z3)(a(z3) —a+ O(z — 23))
—afa(z3) — o) + O(z — 23)
a(z3) —a+ O(z — z3)
= —a+0(z — 23)

7(2) =

Let P = 7+ «. Then in some neighbourhood of z3 we get P(z) = O(z — 23).

First we suppose that P(z) # 0. Since every multiple zero of f — a must belongs to
AU BUC, then we get

N(r,a; f) < Na(r,a; f) + Np(r,a; L) + N(r,0; P)
=50, f)-
Then from (3.17) we get T'(r, f) = S(r, f), a contradiction. Hence P = 0 and so
(a—a)L® —a(fY —a) + a(f —a) = 0.
Since L) = f(I) then we get
(a—a)fV —a(fV —a) +a(f—a) =0
which implies o(f — fV) = 0, since a # 0 then f = f(. So f = ce* where ¢(# 0) is a
constant. Then
LK) = gy pEAD 4o fBH2) 4oy g, pRtn)
= (a1 +ag + -+ ap)ce’
and L+ Z gy f652) 4 g p(43) | plintl)
= (a1 +ag + -+ a,)ce”.
So L¥) = L+1) which is a contradiction.

SUBCASE 2.2. Let L") % L*+1) and LG+ = () Since LK*) % LE+D . Then by
hypothesis we get
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— L(k+1)
N(r,a; L(k)) < Np(r,a; L(k)) + N r,l;w

I, (k+1)
é T T, W + S(Tv f)

(k+1)
=N (T‘,L L+ ) + S(r, f)

< N(r,0; L™¥)) 4+ S(r, f). (3.15)

: A (k)
Again m(r,a; f) =m r,m.m <m(r,0; L\") 4+ S(r, f)

and so

N(r,0;L0) < N(r,a: f) + S(r. ). (3.16)
Hence from (3.15) and (3.16) we get

N(r,a; L)) < N(r,a; ) + S(r, f),
which implies by Lemma 2.3 that

T(r,f) <2N(r,a; f) + S(r, f). (3.17)

Therefore N(r,a; f) # S(r, f). Also since L*+D) = f1 Then L*) = f + ¢, where ¢
is a constant. Also since N(r,a; f) # S(r, f) and by hypothesis we get ¢ = 0. Hence
L% = £ which contradicts the initial supposition of Case 2.
SUBCASE 2.3. Let L) = L+ = ¢ Then LK) = LE+D jmplies LK*) = ce?.
Hence L) = L+ = (1) = ¢e? then f = ce? + d, which implies f does not assume
the values d and oo, by Lemma 2.1 we get

T(r,f) < N(r,0; f —a) + N(r,0; f — o) + N(r,0; f — d) + S(r, f)
< N(r,a; f) + S(r, f).
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This implies N (r,a; f) # S(r, f). Also since Na(r,a; f) + Np(r,a; L®)) = S(r, f) and
f=ce*+d= L% +d we see that E(r,a; f) N E(r,a; L)) # () this implies d = 0 and

so f = L™, we arrive at a contradiction. This completes the proof of the theorem.

4. An open problem. Is it possible to replace the set B of hypothesis (i) of
Theorem 1.1 by B = E(a; L(k)) \ {E(a; f(l)) ﬂE(a; L(kH))}?

Acknowledgement. The author is thankful to the referee for carefully reading the

manuscript and giving suggestions towards improvement of the paper.

References

Hayman, W.K. (1964) : Meromorphic Functions, The Clarendon Press, Oxford.

Jank, G., Mues, E. and Volkman, L. (1986) : Meromorphe Functionen, die mit ihrer ersten und
zweiten Ableitung einen endlichen wert teilen, Complex Var. Theory Appl., Vol. 6, 51-71.

Kaish, I. and Lahiri, I. (2018) : An entire function sharing fixed points with its linear differential
polynomial, ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMAT-
ICA., Vol. 22(1), pp. 125-136.

Lahiri, I. and Ghosh, G. K. (2011) : Entire functions sharing values with their derivatives, Analysis
(Munich) 31, 47-59.

Lahiri, I. and Ghosh, G.K. : Entire functions sharing one value with linear differential polynomials,
Analysis (Munich) 31, 331-340.

Lahiri, I. and Kaish, I. (2013) : Journal of Mathematical Analysis and Applications, 406, 66—74.

Li, P. (1999) : Entire functions that share one value with their linear differential polynomials, Kodai
Math. J., 22, 446-457.

Wang, X.Q., Lei, C.L. and Chen, C.F. (2014) : Unicity of entire functions that share one value
with their linear differential polynomials, Southeast Asian Bull. Math., 38 (6), 917-923.

Yang, C.C. (1972) : On deficiencies of differential polynomials II, Math. Z., 125, 107-112.

Yang, L.Z. (1998) : Entire functions that share one value with their derivatives, Bull. Hong Kong
Math. Soc., 2, 115-121.

Zhong, H. (1995) : Entire functions that share one value with their derivatives, Kodai Math. J., 18,
250-259.

DEPARTMENT OF MATHEMATICS

DR. BHUPENDRA NATH DUTTA SMRITI MAHAVIDYALAYA
HATGOBINDRAPUR, BURDWAN

W.B., INDIA

E-MAIL : g80g@Qrediffmail.com



